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The problem of determining the steady state flow of granular materials in silos
under the action of gravity is considered. In the case of Mohr–Coulomb materials, the
stress equations correspond to a system of hyperbolic conservation laws with source
terms and boundary conditions. A higher order discontinuous Galerkin method is
proposed and implemented for the numerical resolution of those equations. The
efficiency of the approach is illustrated by the computation of the stress fields induced
in silos with sharp changes of the wall angle.c© 2001 Academic Press
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1. INTRODUCTION

This is the first of a series of papers in which we study and implement numerical methods
for the computation of granular flows. The long-term goal is the efficient and reliable
numerical simulation of the flow of granular materials in containers and silos, under the
action of gravity. Some of the corresponding points under study, discussed in more detail
below, are

• stress and velocity determination for steady flows (Mohr–Coulomb materials);
• stress, velocity, and density determination for steady flows (other types of materials);
• determination and prediction of general flow patterns (mass flow vs funnel flow);
• application to industrial problems (flow optimization); and
• construction, study, and resolution of acceptable time-dependent models.

1 This research was supported by the Army Research Office (ARO) through Grants DAAH04-95-1-0419,
DAAH04-96-1-0097 and DAAD19-99-1-0188, by the National Science Foundation (NSF) through Grant DMS-
9818900, and by a grant from the North Carolina Supercomputing Center.
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This paper deals with the stress determination of the steady state flow of Mohr–Coulomb
materials under gravity in axisymmetric containers.

The handling of granular materials is of the greatest importance for many manufacturing
industries, where vast quantities of raw materials are stored and handled in granular form.
Problems of interest can range from applications involving only a few grams of material in
the chemical and pharmaceutical industries to large installations holding several thousand
tons in the mining industry. Serious difficulties are often observed during the withdrawal
process. Those range from dead zones of materials sticking to the container’s walls and flow
stoppage to violent vibrations that can cause the complete collapse of the structure. None
of those phenomena is fully understood. An improvement with respect to the understanding
and predictability of those effects possibly would help reduce the huge financial losses that
routinely result from the above problems.

In spite of applications ranging from the above industrial problems to soil mechanics,
themodelingof granular materials has not reached a level of maturity anywhere near what
has been achieved in fluid mechanics, for instance. The culprit is the fact thatfriction, a
poorly understood concept on its own, is for most regimes the governing phenomenon.
Indeed, the properties of granular material lie between those of a liquid and those of a
solid. This can be illustrated by noticing that, even at rest, a granular material can sustain
some shearing stress, but only in an amount proportional to the “average stress.” When,
and only when, the upper limit is reached, the materialyields; i.e., some deformation takes
place. Various yield conditions have been proposed, among them the Mohr–Coulomb yield
condition and the von Mises yield condition [12]. The first is the granular counterpart of
the Tresca yield surface found in the theory of plastic flows of metals, while the second
is, not surprisingly, the analog of a von Mises condition. In the absence of any compelling
experimental evidence pointing to one model rather than the other [12, p. 290] as being
the “best,” the yield condition used here is of the Mohr–Coulomb type. The reason for
this choice is simplicity, since in that case the steady state equations are always hyperbolic
(they can sometimes switch to elliptic with a von Mises condition [18]) and the stress
equations decouple from the velocity equations. The latter of course still contain the stress;
see Section 2. Under a von Mises condition no decoupling takes place.

Apart from the choice of a plasticity model, the two main physical assumptions, discussed
in Section 2, are first that only established steady state flows are considered and second that
the material is everywhere at yield. Most of the existing work in this field deals with steady
state flows in conical (or wedge-shaped) hoppers, i.e., in spherical coordinates, in domains
such as

{(r, θ, ϕ); r > 0, 0≤ θ < θw, 0≤ ϕ ≤ 2π},
which corresponds to an infinite, converging hopper of half opening angleθw; see Fig. 1.

In this work, both two-dimensional wedge-shaped hoppers and three-dimensional con-
ical ones are considered. The attention devoted to those cases stems from two reasons.
First, in a great number of applications, the containers are indeed axisymmetric, if not
downright piecewise conical. Second, as a consequence of the invariance of the domain
under the scaling transformation(r, θ, ϕ) 7→ (λr, θ, ϕ), whereλ > 0, similarity solutions,
the so-calledradial solutions, can be constructed. This was first observed by Jenike [10],
and has played a fundamental role in the design of industrial hoppers ever since [12, 16]. The
radial solutions can be found numerically by solving systems of ordinary differential equa-
tions, specifically boundary value problems. Their behavior is well documented; see, e.g.,
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FIG. 1. Geometry and coordinate systems for the two-dimensional, wedge-shaped hopper, and the three-
dimensional conical hopper.

[6, 13] or Section 4. Numerical comparisons of radial fields for both Mohr–Coulomb and
von Mises models can be found in [6, 12].

In this paper, we focus on the stress equations. The corresponding steady state equations
representing balance of forces are found to form a hyperbolic system of conservation laws
with several nonstandard features. For instance, the yield condition by itself does not lead to
a properly defined flux, but is rather an additional algebraic constraint; see Section 2. More
precisely, using the symmetry of the problem, it is possible to bring the number of unknown
components of the stress tensor down to three, while conservation of momentum yields
two nontrivial equations (in both the two- and three-dimensional cases). The plasticity
model is what links the three unknowns together and closes the system. This forces the
three dependent variables to stay on a manifold, the yield surface, which for the present
Mohr–Coulomb materials is a cone; see Fig. 2. One way to accommodate this is through
an additional physical assumption,realization of passive rather than active states; see
[12] and Section 2. This is the point of view taken here. It has the advantage of keeping
the system in conservation form, but does restrict somewhat the range of applicability;
see Section 6. Another point of view consists in “solving” the constraint through a clever
reparameterization of the surface: use of the so-calledSokolovskii variables. This is the
standard approach; see Section 6. It comes at the heavy price of destroying the conservation
form of the equations, and thus can only be trusted for the calculation of smooth stress
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FIG. 2. Plasticity model: the Mohr–Coulomb yield surface.
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fields. However, in many cases of practical interest, such as hoppers with abrupt changes
in wall angles and/or wall friction, the stress fields are not expected to be smooth. The
approach taken here allows the reliable calculation of discontinuities such as shear bands.
We are not aware of other hopper flow calculations sharing this property; see, however, [4]
for a simplified model. Finally, aside from friction between the grains, from which stem
the above plasticity models, another important aspect of the problems at hand is friction
between the grains and the container’s walls. An application of the law of sliding friction
yields boundary conditions that complete the hyperbolic system.

The outline of the paper is as follows. Modeling issues are discussed in Section 2. A brief
analysis of the resulting equations is given in Section 3. Section 4 is devoted to the study
of similarity solutions. The algorithm and numerical difficulties are discussed in Section 5.
Finally, numerical results are presented and commented on in Section 6, which is followed
by concluding remarks in Section 7.

2. THE MODEL

The equations governing thetime-dependentflow of granular material under gravity are
derived and analyzed in [18]. Those are found to be linearly ill posed in most cases of
practical interest. To the authors’ knowledge, the situation is not fully understood, mathe-
matically or otherwise. In practice, strongly time-dependent problems are usually observed
in conjunction withfunnel flows, i.e., flows for which the motion is essentially restricted
to the central part of the silo. This paper deals exclusively withmass flows, i.e., flows for
which all the material is mobilized. In this context, established, steady state flows can be
observed.

The spatial domain is taken to be axisymmetric, but not necessarily right conical. The
particles are assumed to have no motion in the axial (orϕ) direction. Even though this
assumption may be counterintuitive to fluid dynamicists, it is an established experimental
fact for granular materials. The dependent variables reduce to four components of stress
and two of velocity,

T =

 Trr Tr θ 0

Tr θ Tθθ 0

0 0 Tϕϕ

 v =

 vr

vθ

0

 . (1)

The equations of motion are

∇ · T = ρg, ∇ · v = 0, (2)

in which ρ is the density, taken to be constant, and the vectorg is the acceleration due to
gravity. The first equation represents the balance of forces in the material, while the second
expresses incompressibility.

The assumption of a constant density deserves some comment. In some practical sit-
uations, for instance near the outlet of a hopper, the bulk density may decrease to levels
where the particles are no longer in sustained contact with each other. This is the case if the
material, on leaving the silo, goes into free fall. However, most industrial silos are equipped
with feeder devices that reduce the output rate to values much less than free fall. Note also
that failing this, neglecting the inertia terms as we did in (2) would probably not be justified;
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see [12]. The treatment of low-density granular flows, which is not covered here, can be
approached through kinetic or mixed frictional–kinetic theories for granular materials; see
[11] and the references therein.

Plastic deformation is assumed everywhere. Constitutive models based on plasticity are
conveniently expressed in terms of the principal stressesσi , i = 1, 2, 3, i.e., the eigenvalues
of the stress tensorT . If the principal stresses are orderedσ1 ≥ σ2 ≥ σ3, then the Mohr–
Coulomb yield condition takes the form

σ1

σ3
= 1+ sinδ

1− sinδ
, (3)

whereδ is the angle of internal friction. This relation can be derived from the law of sliding
friction [12, Ch. 3]. By introducing an “average” stressq = 1

2(σ1+ σ3), one can easily
rewrite the yield condition as

(σ1− q)2+ (σ3− q)2 = 2q2 sin2 δ.

Further, this condition can be expressed in the original stress variables as

(Trr − Tθθ )
2+ 4T2

r θ = sin2 δ(Trr + Tθθ )
2. (4)

Additional constitutive assumptions are needed to close the systems. In the Mohr–
Coulomb analysis,σ2 does not appear. The Haar–von Karman assumption can be invoked to
evaluate the circumferential stressTϕϕ . Indeed, the Mohr–Coulomb analysis merely states
thatσ1 ≥ Tϕϕ ≥ σ3. For axisymmetric converging hoppers, the Haar–von Karman assump-
tion states thatTϕϕ is in fact the major principal stress; i.e.,Tϕϕ = σ1 = q(1+ sinδ).

The resulting equations are

∂r Trr + 1

r
∂θTr θ + 2Trr

r
+ cotθ

r
Tr θ − 1

r
(Tθθ + Tϕϕ) = −ρg cosθ

∂r Tr θ + 1

r
∂θTθθ + 3

r
Tr θ + 1

r
cotθ(Tθθ − Tϕϕ) = ρg sinθ

(5)
(Trr − Tθθ )

2+ 4T2
r θ = sin2 δ(Trr + Tθθ )

2

Tϕϕ = 1

2
(Trr + Tθθ )(1+ sinδ).

It can be observed that the above system (5) fully determines the stresses. Although (5) is
widely accepted as a model of the stress behavior, how to complete the continuity equation
∇ · v = 0 from (2) into a system determining the velocity is much more controversial [9].
One of the main issues is which flow rule to adopt, or more precisely, whether principal
stresses and principal strain rates are aligned. Some models heavily rely on this assumption,
such as those involving Jenike’s principle of coaxiality [10, 12], while others predict sig-
nificant misalignment, such as Spencer’s double shearing model [21, 22]. In a forthcoming
publication [5], we compare various properties of Jenike’s and Spencer’s models, especially
whether they lead to energetically acceptable solutions [8].

Concentrating here exclusively on the stress components, one can write the corresponding
equations in terms of two unknownsTrr andTr θ ,

∂τTrr − ∂θTr θ = f (τ, θ, Trr , Tr θ )
(6)

∂τTr θ − ∂θTθθ = g(τ, θ, Trr , Tr θ ),
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where some simplifications result from the use of the new variableτ = −ln r ; we do not
bother to rename the stress variables. The right-hand terms are given by

f (τ, θ, Trr , Tr θ ) = 3− s

2
Trr + cotθTr θ − 3+ s

2
Tθθ + ρge−τ cosθ

(7)

g(τ, θ, Trr , Tr θ ) = −1+ s

2
cotθTrr + 3Tr θ + 1− s

2
cotθTθθ − ρge−τ sinθ,

where we have sets= sinδ and, for future reference,c = √1− s2 = cosδ. The equation
of state, which relatesTθθ to the unknownsTrr andTr θ , is the yield condition (4). It should
be noticed that (4) is the equation of a cone in the space(Trr , Tr θ , Tθθ ); see Fig. 2.

The corresponding relation betweenTθθ and the unknowns is therefore not a proper
functional relation, but rather assigns the dependent variables(Trr , Tr θ ) together withTθθ
to lie on a manifold: the yield surface defined by (4). Figure 2 suggests the use of a seemingly
more appropriate parameterization of the cone in terms of the Sokolovskii variables(σ, ψ)

[12]. The relationship between the two sets of variables is then

Trr = σ(1− scos 2ψ), Tθθ = σ(1+ scos 2ψ),
(8)

Tr θ = −σssin 2ψ, Tϕϕ = σ(1+ s).

It is possible to rewrite the stress equations (6) in terms of the Sokolovskii variables. This
approach is quite popular in the present field [12] and was for instance taken in [13, 17], as
well as in [14], where more involved models, including compressible flows, are discussed.
However, the use of this nonlinear change of variables has the unfortunate side effect of
destroying the conservation form of the equations, losing in this way the ability to compute
shocks in any reliable way. This would prevent us, for instance, from computing stresses
occurring at the junction between conical hoppers of different wall angles, a situation for
which discontinuities are to be expected. Further, as is well known, many purely numerical
problems also appear when solving systems in nonconservation form.

The Sokolovskii variables are nevertheless valuable in at least two respects. First, as
explained next, they admit a useful physical interpretation. Second, in the case of smooth
flows (see Section 4), they lead to significant mathematical simplifications. In the present
axisymmetric setting, the variableψ is the angle between the position vector at a given
point and the direction of the minor principal stress at that point; see Fig. 3. The values
|ψ | ≤ π/4 correspond to the so-calledpassivestate, [12, 14], as opposed to theactivestate

σ σ σ
σ

σ

σ

θ θ θ

1 1 13
3

3

(r, (r, (r,) ) )

ψ= 0 πψ

ψ ψ

θ θ θ

ψ <0 < π/4 =   /2

FIG. 3. Physical meaning of the Sokolovskii variableψ .



GRANULAR MATERIALS IN SILOS 69

passive active

FIG. 4. Difference between passive and active states.

for whichπ/4< |ψ |. Indeed, the yield condition (3) prescribes the ratioσ1
σ3

, but does not
differentiate between the two situations of Fig. 4.

For converging hoppers, the passive state is the one observed experimentally upon dis-
charge [16], and corresponds to the “top” of the yield surface: a large lateral compression
takes place. Going back to the original variables to keep the system in conservation form,
one can solve (4) forTθθ and find the equation of state completing (6, 7),

Tθθ = h(Trr , Tr θ ) ≡ 1+ s2

1− s2
Trr + 2

√
s2

(1− s2)2
T2

rr −
1

1− s2
T2

r θ . (9)

However, as illustrated in Fig. 5, the range of values that can be treated this way is strictly
smaller than that of the passive case. One can solve forTθθ as above only if| Tr θ

Trr
| < tanδ,

which corresponds to|ψ | < π
4 − δ

2. The existence of the thresholdπ4 − δ
2 results from our

choice of coordinates. By using other coordinate systems, it may be possible to increase the
range of values that can be treated by our approach; see further remarks in the next section.

Finally, if instead of a three-dimensional conical hopper, one considers a “two-
dimensional” wedge-shaped hopper [11–14] (see Fig. 1), the equations simplify to

∂r Trr + 1

r
∂θTr θ + 1

r
(Trr − Tθθ ) = −ρg cosθ

∂r Tr θ + 1

r
∂θTθθ + 2

r
Tr θ = ρg sinθ (10)

(Trr − Tθθ )
2+ 4T2

r θ = sin2 δ(Trr + Tθθ )
2.

/4π= 
ψ=0

T

Tθθ

rr

0=ψ

θθT

θrT

ψ| |= π/4- δ/2

/4π= |ψ|

ψ| |

FIG. 5. Illustration of the passive state|ψ | < π/4 vs the values for which hyperbolicity is satisfied|ψ | <
π

4
− δ

2
; see also Section 3.
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The stress equations can again be written under form (6) with here

f (τ, θ, Trr , Tr θ ) = Trr − Tθθ + ρge−τ cosθ
(11)

g(τ, θ, Trr , Tr θ ) = 2Tr θ − ρge−τ sinθ.

The systems (5) and (10) have to be completed with appropriate boundary conditions. A
brief analysis of the stress equations, presented in the next section, will reveal what kind
of boundary condition leads to well-posedness. The principal parts corresponding to the
two- and three-dimensional problems (10) and (5) being identical, the analysis covers both
cases.

3. BRIEF ANALYSIS OF THE EQUATIONS

The stress equations (6) can be rewritten as

∂τU + ∂θ F(U ) = G, (12)

with the obvious notation. One can then analyze the eigenvaluesλ1,2 of the JacobianF ′. A
few calculations lead to

λ1,2 = ∓tanδ ∓ 1

c

√
sTrr ∓ cTr θ

sTrr ± cTr θ
, r1,2 =

[
1
λ1,2

]
, (13)

wherer1,2 are the corresponding eigenvectors. The eigenvalues are real provided that one
stays “in the cone,” i.e.,| Tr θ

Trr
| < tanδ, which corresponds to the domain of definition ofF in

(12). In that case, one clearly hasλ1 < λ2. Consequently, the steady state stress equations
(6), (7), (9) form astrictly hyperbolic system of nonlinear conservation laws with source
terms. The radial and angular variablesτ andθ can be thought of as time-like and space-like
variables, respectively. One cannot overemphasize the importance of this key observation:
the problem of the determination of the stress field is one ofpropagation. Incidentally,
it should be noticed that if a von Mises yield surface, [7, 12], is used, instead of the
present Mohr–Coulomb approach, then the corresponding three-dimensional steady state
equations are sometimes elliptic instead [18]. In the two-dimensional case, both approaches
are identical. Numerical comparisons between the two types of models, in the case of
similarity solutions (see Section 4), can be found in [6, 12].

Additional facts can be uncovered about the hyperbolic system (6) governing the stresses
under the present approach. First, the eigenvalues are unbounded, even for bounded stress
components. Indeed, forTrr fixed, one observes that

λ1→−tanδ whenTr θ ↑ tanδTrr ,

λ1→−∞ whenTr θ ↓ −tanδTrr ,

λ2→∞ whenTr θ ↑ tanδTrr ,

λ2→ tanδ whenTr θ ↓ −tanδTrr .

Further, direct calculations show that for any{Trr , Tr θ } such that| Tr θ
Trr
| < tanδ, one has

∇λi · ri 6= 0, i = 1, 2. Both characteristic fields are thus genuinely nonlinear.
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FIG. 6. Link between a possible loss of hyperbolicity and the choice of a coordinate system.

Again, it is instructive to rewrite the expression (13) for the eigenvalues in terms of the
Sokolovskii variables(σ, ψ). One finds after some manipulations

λ1,2 = cot(ψ ∓ (π/4− δ/2)). (14)

In other words, the stress characteristics are inclined at±(π/4− δ/2) to the major principal
stress direction [12, 13]; see Fig. 6. As noticed in the previous section, values for which
|ψ | ≥ π/4− δ/2 lead to grief, here through the fact that the range of influence would be
partially pointing “into the past” (increasing values ofr , i.e., decreasing values ofτ ). One
also observes from Fig. 6 that this problem could be partially alleviated by changing the
time-like variable from radial to a variable whose level lines would be closer to being parallel
to the local direction of the major principal stress. How to do this in practice is under study.

We now seek to learn what type of discontinuities constitute admissible shocks for the
stress equations (6). To determine the Hugoniot loci, a fixed state(T̂ rr , T̂ r θ ) is considered.
The Rankine–Hugoniot condition for (6) takes the form

T̃ r θ − T̂r θ = w(T̃ rr − T̂ rr )

T̃ θθ − T̂ θθ = w(T̃ r θ − T̂ r θ ),

wherew stands for the shock speed, for lack of a better notation, and ˜· denotes the states
to be found. Eliminatingw leads to

(h(T̃ rr , T̃ r θ )− h(T̂ rr , T̂ r θ ))(T̃ rr − T̂rr ) = (T̃ r θ − T̂r θ )
2,

whereh(·, ·) is defined in (9). The above equation is essentially equivalent to a general
polynomial equation of degree 4 and, as such, does not admit any easy-to-handle-closed-
form solutions. Making use of the genuine nonlinearity of both fields, admissibility is given
by Lax’s entropy condition. Consequently, considering the fixed state ˆ· as the left state, a
discontinuity in thei th field, i = 1, 2, is admissible only if

λ̂i > w > λ̃i .

The situation is illustrated in Fig. 7.
The system has to be completed with “initial” and boundary conditions. The boundary

conditions are given by the law of sliding friction. At any point on the wall, the magnitude



72 GREMAUD AND MATTHEWS

0
0.5

1
1.5

2
2.5

3

2

1

0

1

2
0

1

2

3

4

5

6

T
rr

T
rθ

   
   

 T
θθ

0 0.5 1 1.5 2 2.5 3
2

1. 5

1

0. 5

0

0.5

1

1.5

2

T
rr

T
rθ

T
rθ =  tan(δ) T

rr

T
rθ = tan(δ) T

rr

fixed left state 

1 shock 

2 shock 

FIG. 7. Hugoniot loci. A fixed state(T̂ rr , T̂ r θ ) = (1, 0) is considered the left state. Left: Location of the
corresponding Hugoniot curves. Right: Admissible shocks (δ = 30◦).

of the tangential stress|TT | is proportional to the magnitude of the normal stress|TN |; i.e.,

|TT | = µ|TN |,

whereµ > 0 is the coefficient of wall friction. In a purely radial geometry, the above boun-
dary condition becomes

Tr θ = ±µTθθ on the walls, (15)

with a “+” sign on one side of the hopper and a “−” sign on the other; see Section 5 for
more details.

The case of the “initial” condition is more delicate. It is chosen here to prescribe the stress
field high up in the hopper, say, on a “τ = constant” surface, and solve down from there.
In other words, it is assumed that stress information flows from the top down, rather than
from the bottom up, which would make equal sense mathematically. Indeed, if one puts a
weight on top of material in a hopper, stresses increase but the flow speed does not change
significantly. On the other hand, if one changes the speed of the flow near the outlet, for
instance, the velocity field then changes throughout the hopper with only minimal changes
in stress. It seems thus that velocity information flows from the bottom up [19]; see also
[23, 24] for some experiment-based arguments. Those questions are under study [5].

4. SIMILARITY SOLUTIONS

In the early 1960s, Jenike [10] discovered similarity solutions for the steady state equa-
tions governing flow of granular materials under gravity in a conical or wedge-shaped
hopper. In these solutions, particle paths are radial lines converging to the vertex of the
hopper. For this reason, the solutions are referred to asradial solutions. The similarity is
reflected in scalings of the stress and velocity with respect to radial distancer , with the
result that stress decreases along particle paths while the particles accelerate. Radial so-
lutions, tabulated by Jenike for a large range of physical parameters, form the basis for
much work on the design of mass flow hoppers [16], in which the flow is thought to be
approximately radial. These solutions are also helpful for understanding and studying basic
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properties of hopper flow [12] and the role of parameters such as internal friction and wall
friction.

Following Jenike, one can seek similarity solutions to the two- and three-dimensional
problems, respectively (5) and (10), of the form

Ti j (r, θ) = r Ti j (θ).

The formulation can be simplified through the use of the Sokolovskii variables; see Section 2.
Since the similarity solutions sought in this section are smooth, this change of variables
is here perfectly justified. The equations defining the radial solutions for the stresses are
found to correspond to the boundary value problem [6, 12]

A
[
σ ′(θ)

ψ ′(θ)

]
= Bd(θ, σ (θ), ψ(θ)), θ ∈ (−θw, θw),

(16)
ψ(±θw) = ±ψw.

In the above problem, the quantitiesA, Bd, d = 2 or 3 andψw are given by

A =
[ −ssin 2ψ −2sσ cos 2ψ

1+ scos 2ψ −2sσ sin 2ψ

]
,

B2(θ, σ, ψ) = ρg

[−cosθ
sinθ

]
+ σ
[

3scos(2ψ)− 1

3ssin(2ψ)

]
,

B3(θ, σ, ψ) = ρg

[−cosθ
sinθ

]
+ σ
[

4scos(2ψ)− 1+ s+ scotθ sin(2ψ)

4ssin(2ψ)− s(cos(2ψ)− 1) cotθ

]
,

ψw = 1

2

(
8+ arcsin

(
sin8

s

))
,

where8 is theangle of wall friction, which is defined by tan8 = µ, 0≤ 8 ≤ π/2. The
boundary value problem (16) is nonsingular provided that

|ψ | < π

4
+ δ

2
.

Note that the above is a third critical value of|ψ |, in addition to the first two discussed
in Fig. 5, which corresponded respectively to the threshold hyperbolic/nonhyperbolic and
passive/active. The fact that the problem of finding the radial fields may become singular
under some circumstances should not come as a surprise. Indeed, the assumption that the
material is at yield everywhere, which precludes the formation of rigid areas in the flow, is
clearly not satisfied if the opening angle is too wide.

The above problem (16) has to be solved numerically. This can easily be done through
the use of a collocation method, for instance, such as COLSYS [1], which was used here
and is based on collocation at Gaussian points. A study of the properties and stability of
radial solutions can be found in [6]; see also [12, 13] for earlier results.

5. THE ALGORITHM

For the sake of simplicity, we only describe the algorithm in the case of a conical hopper.
The method used is a formally high-order discontinuous Galerkin scheme; see [3] and the
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references listed therein. This type of method presents several advantages. Unlike more
standard finite element methods, they are explicit in time, hereτ , and can be equipped with
high order TVD Runge–Kutta time discretizations [2]. Unlike most high-order finite differ-
ence methods, their compact stencil allows easy implementation of boundary conditions,
as only the information from immediate neighbors is used to march in time (τ ). It is worth
noting that for the present application, no a priori bound on the speeds of propagation is
available; see (13).

Let τ0 = −ln r0, wherer0 is the value of the radial variable from which we start. Let
θw > 0 be the half opening angle, and let1θ = θw/N be the mesh size,N being the
number of cells. In this axisymmetric setting, the problem is essentially one-dimensional
“spatially,” and thus no efforts have been made to adapt the mesh. We define

V = {v ∈ L∞(0, θw)2 : v|K j ∈ Pk(K j )
2, j = 0, . . . , N − 1

}
,

whereK j = [θ j−1/2, θ j+1/2] is the j th cell, withθ j−1/2 = j1θ , andPk(K j ) stands for the
space of the polynomials of degree at mostk in K j . We usek = 1 or 2 below; see Section 6.
A semidiscretization consists in looking forUh(τ, ·) ∈ V , τ > τ0, such thatUh(τ0, ·) =
5V (U (τ0, ·)), whereU (τ0, ·) is an “initial condition” (see Section 6),5V is a projection
operator intoV , and

d

dτ

∫
K j

Uh(τ, θ)v(θ)dθ +1+
(
v
(
θ j−1/2

)
Hj−1/2

)− 5∑
l=1

ωl F(Uh(τ, θ j,l ))
d

dθ
v(θ j,l )1θ

=
5∑

l=1

ωl G(τ, θ j,l ,Uh(τ, θ))v(θ j,l )1θ, ∀v ∈ V, j = 1, . . . , N.

In the previous expression,1+ stands for the usual difference operator,1+U j = U j+1−
U j , and the coefficientsωl and the nodesθ j,l , l = 1, . . . ,5, j = 1, . . . , N, stem from the
use of the classical 5-point Gaussian quadrature formula. We use the local Lax–Friedrichs
flux

Hj+1/2 = 1

2

(
F
(
U−j+1/2

)+ F
(
U+j+1/2

)− α j+1/2
(
U+j+1/2−U−j+1/2

))
,

whereα j+1/2 is the magnitude of the largest eigenvalue of a properly chosen Roe average
matrix Aj+1/2 ≈ ( d F

dU )U=U j+1/2 [15]. Rewriting the equation of state (9) ash(a, b) = αa+√
βa2+ γb2, with α = 1+s2

1−s2 , β = 4s2

(1−s2)2
, andγ = −4

1−s2 , the Roe average matrixAj+1/2

can be chosen here as

Aj+1/2 = −
[

0 1

α + β ā j+1/2

χ̄ j+1/2
γ

b̄j+1/2

χ̄ j+1/2

]
,

where the averages are defined bȳa j+1/2 = (a−j+1/2+ a+j+1/2)/2, b̄ j+1/2 = (b−j+1/2+
b+j+1/2)/2 andχ̄ j+1/2 =

√
β(a−j+1/2)

2+ γ (b−j+1/2)
2/2+

√
β(a+j+1/2)

2+ γ (b+j+1/2)
2/2.

The mass matrix can be made diagonal by choosing the basis functions as Legendre
polynomials over each cell [2]. The coefficients ofUh(τ, ·) can then be grouped in a vector
U(τ ). The unknown vectorU(τ ) satisfies the system of ODEs

d

dτ
U = F(U)+ G(τ,U), (17)
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whereF(U) andG(τ,U) come respectively from the discretization ofF(U ) andG(τ, θ,U )
in (12). Note that we use below an unsplit approach. This is justified first by the fact that
the source termG(τ,U) is not stiff and second by the realization that the delicate interplay
betweenG(τ,U) and the boundary conditions would render the implementation of a split
algorithm a lot more involved than the present approach.

The discretization with respect toτ involves a third-order TVD Runge–Kutta [20] com-
bined with a local slope limiting process. Let1τ > 0 be a constant increment inτ and let
τ n = τ0+ n1τ andNτ be the number of time steps. The algorithm reads then as follows
(see, e.g., [3]):

• SetU0
h = 35(Uh(τ0, ·));

• For n = 0, . . . , Nτ − 1, computeUn+1
h :

1. setU (0) = Un
h ;

2. for i = 1, . . . ,3, compute the intermediate stages

U (i ) = 35
 i−1∑

j=0

αi j U
( j ) +1τβi j

(
F
(
U ( j )

)+ G(τ n + dj1τ,U
( j )
));

3. setUn+1
h = U (3).

The numerical parameters{αi j }, {βi j }, and{dj }, i = 1, 2, 3, j = 0, 1, 2, are defined as

α10 = 1 β10 = 1 d0 = 0

α20 = 3
4 α21 = 1

4 β20 = 0 β21 = 1
4 d1 = 1

α30 = 1
3 α31 = 0 α32 = 2

3 β30 = 0 β31 = 0 β32 = 2
3 d2 = 1

2.

A thorough description of the local slope-limiting operator35, which is based on the use of
a corrected minmod function, can be found, e.g., in [3] (see [2] for the modifications to35

at the boundary); it is not repeated here. Note that both35 and the proper implementation
of the boundary conditions (15) require transformation to the characteristic fields.

The construction of the numerical flux at the boundaries deserves some comments. Ex-
pressed in the original variables, the boundary conditions are

Trr even, Tr θ odd atθ = 0,

and

Tr θ = −µTθθ at θ = θw.

The corresponding nodes areθ−1/2 = 0 andθN−1/2 = θw. Considering first the condi-
tion atθ = θw, the matrixAN−1/2 is diagonalized,AN−1/2 = R3R−1, where the columns
of R= [r1 | r2] are the right eigenvectors ofAN−1/2 and3 = diag(λ1, λ2). We know

from Section 3 thatλ1 < 0 andλ2 > 0. The vectorT = [ T−rr ,N−1/2
T−r θ,N−1/2

] is transformed to

characteristic variables by left multiplying byR−1; i.e., [u
−
1,N−1/2

u−2,N−1/2
] = R−1T . Sinceλ2 > 0,

we setu+2,N−1/2 = u−2,N−1/2. The boundary conditionTr θ = −µTθθ is used to defineu+1,N−1/2.
It should be noted that even though the above boundary condition appears to be nonlinear in
(Trr , Tr θ ), it is in fact a linear relation. This can be seen geometrically since this amounts to
taking the intersection of the yield cone (4) (see Fig. 2) with a planeTr θ = −µTθθ through
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the vertex of the cone. Algebraically, the boundary condition reduces to

Trr = χwTr θ with χw = −1− scos 2ψw
ssin 2ψw

,

whereψw is defined as in (16). By translating this condition to characteristic variables
throughR= [r1 | r2], one obtains

u+1,N−1/2 =
−r12+ χwr22

r11− χwr21
u+2,N−1/2.

The values entering as arguments in the numerical flux atθ = θw are then[
T+rr ,N−1/2

T+r θ,N−1/2

]
= R

[
u+1,N−1/2

u+2,N−1/2

]
.

The conditions atθ = 0 simply correspond to the symmetry properties of the stress com-
ponents and are directly implemented as[

T−rr ,−1/2

T−r θ,−1/2

]
=
[

T+rr ,−1/2

−T+r θ,−1/2

]
.

6. COMPUTATIONAL RESULTS

We analyze the influence of abrupt changes in the wall angle on the stress field. The
geometrical situation is illustrated in Fig. 8.

Any point P admits two representations, namely,(R,2) and(r, θ), corresponding to the
natural coordinate systems for the upper and lower hopper, respectively. The transition is
located through the pointQ (see again Fig. 8), whereQ = (R0,−2w) = (r0,−θw). For
given values of the material parametersδ andµ, the numerical approach consists then of

• generating the radial stress fieldT in the upper hopper{(R,2) : R> 0, |2| ≤ 2w}
[6, 12]; by construction, at a point(R,2), the radial stress field is given byRT(2);

θw-

Γ0 Γ0

θw-Θw-

PQ Q Θw-
P

FIG. 8. Geometrical situation: left, transition to a flatter wall angle; right, transition to a steeper wall angle.
The radial stress is used to generate an initial condition on the curve00. The domains of calculation are shaded.
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• interpolating the radial stress field on the curve00 = {(r, θ): r = r0, |θ | ≤ θw}, leading
to a stress tensorS2w ;
• changing to the new coordinate system to getSθw = RT (2− θ)S2wR(2− θ), where

R(α) is the rotation matrix of angleα;
• solving in the lower hopper{(r, θ): 0< r < r0, 0< θ < θw} using the algorithm de-

scribed in Section 5, andSθw as an initial condition.

The boundary conditions are implemented as described at the end of Section 5.
Some comments are in order. First, the fact that the initial condition is generated from

the radial stress field implicitly assumes that this very solution is sought and realized by
the problem in the upper part of the hopper. Second, it also takes as granted that the radial
solution reaches the curve00 unperturbed by the wall corner. This last point is clearly
satisfied, assuming again a downward propagation of the information for the stresses, in
the case of a transition to a flatter hopper, i.e.,2w < θw (Fig. 8 left). If the transition is to a
steeper hopper,θw < 2w (Fig. 8 right), a quick analysis based on the characteristic curves
reveals that the difference in angles should not be too large, namely

2w − θw < arctan

∣∣∣∣ 1

λmax

∣∣∣∣, θw,2w > 0.

Hereλmax is the largest eigenvalue in modulus ofF ′, see (13), evaluated along the curve00

(anr equal to constant line for the lower hopper).
By way of illustration, we considerδ = 32.1◦ andµ = tan(11.7◦) and determine the

maximum transition for a range of upper hopper wall angles,2w (Fig. 9). It is clear from the
expression for the eigenvalues in terms of the Sokolovskii variables (14) that the maximum
value ofψ determines the eigenvalue of largest modulus and thus the limitation on the
size of the transition. First, note that the value ofψ at the wall in the upper hopper is
independent of the wall angle2w; see, e.g., (16). As can be checked numerically, for
the present illustrationψ is monotonic for values of2w up to 22.4◦. Thus for this range
of opening angles, its maximum value is found at the wall. Consequently, the maximum
transition allowed for2w < 22.4◦ is constant. In Fig. 9, this corresponds to the linear
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FIG. 9. Range of values ofθw leading to a well-defined “initial” condition for given values of2w; δ = 32.1◦,
µ = tan(11.7◦).



78 GREMAUD AND MATTHEWS

portion of the curve (markedC) representing the minimum theoretical value ofθw. For
2w > 22.4◦, ψ ceases to be monotonic and has a global maximum in the interior of the
domain. It can be checked, again through the numerical calculation of the radial field, that the
maximum value ofψ keeps increasing as2w is increased further. This results in a decrease
in size of the allowable transition. This can be seen by the curveC approaching the line
θw = 2w. For some value of2w, 39.5◦ for the present example, the maximum transition
has neared zero (curveC intersects the lineθw = 2w) and our current approach cannot treat
even the initial condition since there, the maximum ofψ is already greater thanπ/4− δ/2
and a transition to a hopper of steeper wall angle can only make the problem more difficult.

While determining whether an initial condition fits the limitations of our current approach
can be easily done as above, checking whether the problem stays “solvable” for allτ > 0
is not as clear. This amounts to establishing a priori bounds on the magnitude ofψ . This
was done a posteriori, and numerically, for the above example. Turning again to Fig. 9,
the vertical bar at2w = 30◦ denotes the actual (small) range of transitions over which the
solution can be computed forτ À 0.

Finally, the caseθw = 2w can be used to check that the algorithm effectively preserves
the radial solution. The interaction between the boundary conditions and the forcing terms
renders this numerically delicate. Further, the radial solution itself may be unstable [6].
For θw = 2w, the present approach preserves the radial solution with a great degree of
accuracy. In Fig. 10, the relative difference between the radial solution at any given “time”
τ and the solution from the PDE solver is illustrated. Both graphs in Fig. 10 correspond
to an integration 95% down the hopper. One observes that even though in both cases the
error is quite small, the behaviors of the two- and three-dimensional problems are quite
different. For the two-dimensional problem, the largest discrepancy is less than 0.025%, but
it appears to be increasing as one progresses down the hopper. In the three-dimensional case,
the largest value of the discrepancy is about 100 times larger, but the difference decreases
as one solves down the hopper to an asymptotic value less than 0.5%. The fact that the
two-dimensional problem is less stable than its three-dimensional counterpart was already
observed in [13]; see also [6] for a linear stability study. Because the initial condition is
constructed as a projection of a numerical solution into polynomial space, it does not exactly
satisfy the boundary conditions. The resulting perturbations propagate through the hopper
and are amplified when being reflected at the center, or more precisely when interacting
with similar waves coming from across the hopper. In the three-dimensional axisymmetric
case, those waves come from all directions, which is not the case for the two-dimensional
problem. The spikes observed in Fig. 10, right, correspond to the interactions of those waves
at the center. Below, both the case of a transition to a steeper hopper,θw < 2w, and that of
a transition to a shallower one,θw > 2w, are considered. One can note that with respect to
applications, it may be even more important to treat the flow near the juncture between a
cylindrical silo and a conical hopper. However, the two cases, i.e., cylindrical vs conical,
correspond to two different types of motion. Indeed, in cylindrical geometry, the material
can flow without deforming. Further, the state in the cylindrical portion is likely to be active
(as a result of the filling process), while the passive state is expected in the converging
conical silo; see Section 2 and [12, 14, 17]. The determination of the precise nature of the
transition between the passive and active parts of the flow and the corresponding “switch
stresses” [12, Sect. 7.13] are still to our knowledge essentially open problems. To avoid those
delicate problems, we consider here exclusively junctures between two converging conical
(or wedge-shaped) hoppers, in order to have a passive state throughout. Some predictions as
to what happens can be found in [12, p. 237]. By invoking a simple characteristics analysis
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FIG. 10. Preservation of the radial field by the PDE solver. Left: Wedge-shaped hopper; right: conical hopper.
For each value ofτ = −ln r , the error is represented by the maximum percentage of difference between the radial
field and the PDE solution;θw = 2w = 30◦, δ = 32.1◦, µ = tan(11.7◦).

and/or by using a (dangerous) analogy with fluid dynamics, one may guess that transitions
to steeper hoppers will lead to rarefaction wave formation, while transitions to shallower
hoppers should correspond to the formation of shock waves. To some extent, our results
confirm this, but also show that the situation is in general far more complex.

Computational results are given below for values of the material parameters

δ = 32.1◦, µ = tan 11.7◦, ρ = 790 kg/m3,

which roughly corresponds to corn in a steel hopper. The number of “spatial” cells (angular
variable) in the half-hopper corresponding to the domain of calculation isN = 400. The
time step (radial increment) is chosen to satisfy the experimental stability condition [2]

λmax
1τ

1θ
≤ 1

2k+ 1
,

whereλmax is the magnitude of the largest eigenvalue all the Roe matrices. Finally, most of
the results presented are for a polynomial approximation of degreek = 1. Using discontin-
uousP2, k = 2, did not lead to significant improvements at comparable cost (see Fig. 11),

0.75

0.8

0.85

0.9

0.95

0.15 0. 1 0.05 0 0.05 0.1 0.15

T
rr

/r

Y

X

0.75

0.8

0.85

0.9

0.95

0.15 0. 1 0.05 0 0.05 0.1 0.15

T
rr

/r

Y

X

FIG. 11. Details for a transition from a conical2w = 30◦ hopper to aθw = 24◦ one;δ= 32.1◦,µ= tan(11.7◦).
Left: P1 approximation withN= 400; right:P2 approximation withN= 200.
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convergence, or the lack thereof, to a radial field.
Figure 12 illustrates the effects on the stress field of a transition from a 30±conical hopper

t o a 2 5 ± o n e . O n e c a n c l e a r l y o b s e r v e t h e f o r m a t i o n o f r a r e f a c t i o n w a v e s o r i g i n a t i n g f r o m t h e
l i n e o f t r a n s i t i o n . A s o n e m o v e s d o w n t h e h o p p e r , t h o s e w a v e s c o n v e r g e f r o m a l l d i r e c t i o n s
t o t h e c e n t e r o f t h e c o n e , w h e r e t h e y i n t e r a c t . T h i s i n t u r n i n d u c e s a s t r o n g s h a r p e n i n g ,
e v e n t u a l l y r e s u l t i n g i n d i s c o n t i n u i t e s . W h e t h e r t h o s e a r e s h o c k w a v e s o r m e r e l y c o n t a c t
d i s c o n t i n u i t i e s ( s h e a r b a n d s ) i s n o t c l e a r a t t h i s p o i n t . W e o b s e r v e , h o w e v e r , t h a t i f t h e
v e l o c i t y e q u a t i o n s a r e b a s e d o n J e n i k e ’ s p r i n c i p l e o f c o a x i a l i t y [ 1 0 , 1 2 ] , t h e n t h e v e l o c i t y
c h a r a c t e r i s t i c s a r e i n c l i n e d a t a n a n g l e ß π / 4 f r o m t h e m a j o r p r i n c i p a l s t r e s s , w h i l e f o r t h es t r e s s c h a r a c t e r i s t i c s t h i s a n g l e i s ß ( π / 4 ° δ / 2 ) ; s e e E q . ( 1 4 ) . I f , i n s t e a d , S p e n c e r ’ s d o u b l es h e a r i n g m o d e l [ 2 1 , 2 2 ] i s a d o p t e d t h e n t h i s a n g l e i s e q u a l t o ß ( π / 4 ° δ / 2 ) f o r b o t h s t r e s s

a n d v e l o c i t y . R e g a r d l e s s , a s l o w c o n v e r g e n c e b a c k t o a r a d i a l fi e l d c a n a l s o b e o b s e r v e d i n
t h i s c a s e , a s w e l l a s i n a l l o u r t h r e e - d i m e n s i o n a l e x p e r i m e n t s .

T h e s a m e t r a n s i t i o n a s a b o v e , i . e . , 3 0 ± ! 2 5 ± , b u t f r o m a t w o - d i m e n s i o n a l w e d g e - s h a p e d
h o p p e r i s r e p r e s e n t e d i n F i g . 1 3 . H e r e a s w e l l , t h e r e i s i n i t i a l f o r m a t i o n o f r a r e f a c t i o n w a v e s .
I n t h i s c a s e t h e s t e e p e n i n g o f t h e w a v e s i s s l o w e r . H o w e v e r , t h e m a i n f e a t u r e h e r e i s t h a t
t h e fi e l d d o e s n o t g o b a c k t o r a d i a l a s o n e m o v e s d o w n t h e h o p p e r . I n f a c t , t h e p e r i o d i c - l i k e
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FIG. 14. Transition from a wedge-shaped2w= 30◦hopper to aθw= 35◦one;δ = 32. 1◦,µ = tan(11. 7◦).structure that can be observed in Fig. 13 is representative of our two-dimensional exper-
iments. Next, we consider transitions from steeper hoppers to shallower ones. For those
cases, it turns out that values incompatible with our model, i.e.,| ψ | ≥π / 4 − δ / 2 (seeabove discussion) are very easily reached. This is especially true of the three-dimensionalcase where transitions of only about 2

◦

in the wall angle could be treated. Problems involv-ing this kind of transitions for two-dimensional, wedge-shaped hoppers are revealed to bemore accommodating. Figure 14 illustrates the transition from a 30◦wedge-shaped hopperto a 35
◦

one. This time, one can observe the formation of shock waves emanating from theopening angle transition. Again, a periodic-like pattern appears and no transition back to aradial structure is observed.

7. CONCLUDING REMARKSThe steady state flow of granular materials in silos under the action of gravity is con-sidered. We focus here on Mohr–Coulomb materials for which the equations determiningthe stress field can be solved independent of the other variables (velocity and/or density).Those equations form a system of hyperbolic conservation laws. The equation of state de-rives from the plasticity model and does not correspond to a proper functional relation butrather to an algebraic constraint. The standard way around this has so far been the use ofa parameterization of the manifold (yield surface) corresponding to the above constraint.How to do this without losing the conservation form of the system is not clear. In otherwords, this approach can only be used for the calculation ofsmoothstress fields. The pointof view taken here is to work directly with the stress components, i.e.,withouta param-eterization of the yield surface. As a result, conservation form is preserved, allowing forinstance for the reliable calculations of shock waves. The algebraic constraint is “solved”by restricting the type of problems considered. Only flows in the passive state (in fact evenonly a subset of those) can be treated. However, and unlike the previous work we are awareof, the present approach can be applied in the determination of the effects on the stress fieldof sharp transitions in the opening angle of the hopper containing the material (changes inthe physical properties of the walls, i.e., wall friction, can be similarly treated).The equations are discretized through a discontinuous Galerkin method. The presence ofboth boundary conditions and source terms led to some numerical difficulties and prompted
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the use of an unsplit implementation. The problems of transition from shallower to steeper
hoppers are solved successfully by the present approach for a wide range of parameters,
both in the case of three-dimensional conical hoppers and in the case of two-dimensional
wedge-shaped ones. Transitions from steeper to shallower hoppers are found to be more
delicate. While the two-dimensional case can still be efficiently treated, it is found that three-
dimensional hoppers can only accommodate small transitions of this type. This limitation
is not physical nor is it related to a shortcoming of the numerics, but ultimately results from
the choice of coordinate system. Roughly speaking, characteristics that should be “pointing
down” (decreasing values of the radial time-like variable) stop doing so, resulting in a loss
of hyperbolicity. The study of alternate coordinate systems that would expand the range of
parameters to which the present method applies while keeping the equations in conservation
form is under way.

The resolution of the full problem, i.e., determination of stress and velocity fields, will
be the object of a future publication.
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