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The problem of determining the steady state flow of granular materials in silos
under the action of gravity is considered. In the case of Mohr—Coulomb materials, the
stress equations correspond to a system of hyperbolic conservation laws with source
terms and boundary conditions. A higher order discontinuous Galerkin method is
proposed and implemented for the numerical resolution of those equations. The
efficiency of the approach is illustrated by the computation of the stress fields induced
in silos with sharp changes of the wall angleg 2001 Academic Press
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1. INTRODUCTION

This is the first of a series of papers in which we study and implement numerical meth
for the computation of granular flows. The long-term goal is the efficient and reliab
numerical simulation of the flow of granular materials in containers and silos, under 1
action of gravity. Some of the corresponding points under study, discussed in more de
below, are

e stress and velocity determination for steady flows (Mohr—Coulomb materials);

e stress, velocity, and density determination for steady flows (other types of materia
e determination and prediction of general flow patterns (mass flow vs funnel flow);

e application to industrial problems (flow optimization); and

e construction, study, and resolution of acceptable time-dependent models.

1 This research was supported by the Army Research Office (ARO) through Grants DAAH04-95-1-04
DAAH04-96-1-0097 and DAAD19-99-1-0188, by the National Science Foundation (NSF) through Grant DM
9818900, and by a grant from the North Carolina Supercomputing Center.
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64 GREMAUD AND MATTHEWS

This paper deals with the stress determination of the steady state flow of Mohr—Coulo
materials under gravity in axisymmetric containers.

The handling of granular materials is of the greatest importance for many manufactur
industries, where vast quantities of raw materials are stored and handled in granular fc
Problems of interest can range from applications involving only a few grams of material
the chemical and pharmaceutical industries to large installations holding several thous
tons in the mining industry. Serious difficulties are often observed during the withdraw
process. Those range from dead zones of materials sticking to the container’s walls and
stoppage to violent vibrations that can cause the complete collapse of the structure. N
of those phenomena is fully understood. An improvement with respect to the understanc
and predictability of those effects possibly would help reduce the huge financial losses:
routinely result from the above problems.

In spite of applications ranging from the above industrial problems to soil mechani
themodelingof granular materials has not reached a level of maturity anywhere near wit
has been achieved in fluid mechanics, for instance. The culprit is the fadtittiain, a
poorly understood concept on its own, is for most regimes the governing phenomer
Indeed, the properties of granular material lie between those of a liquid and those c
solid. This can be illustrated by noticing that, even at rest, a granular material can sus
some shearing stress, but only in an amount proportional to the “average stress.” Wi
and only when, the upper limit is reached, the matsfields i.e., some deformation takes
place. Various yield conditions have been proposed, among them the Mohr—Coulomb y
condition and the von Mises yield condition [12]. The first is the granular counterpart
the Tresca yield surface found in the theory of plastic flows of metals, while the secc
is, not surprisingly, the analog of a von Mises condition. In the absence of any compelli
experimental evidence pointing to one model rather than the other [12, p. 290] as be
the “best,” the yield condition used here is of the Mohr—Coulomb type. The reason 1
this choice is simplicity, since in that case the steady state equations are always hypert
(they can sometimes switch to elliptic with a von Mises condition [18]) and the stre
equations decouple from the velocity equations. The latter of course still contain the stre
see Section 2. Under a von Mises condition no decoupling takes place.

Apart from the choice of a plasticity model, the two main physical assumptions, discus:
in Section 2, are first that only established steady state flows are considered and secon
the material is everywhere at yield. Most of the existing work in this field deals with stea
state flows in conical (or wedge-shaped) hoppers, i.e., in spherical coordinates, in dom
such as

{(rvea(p);r >O’0§9<9w’0§§0§277},

which corresponds to an infinite, converging hopper of half opening &pgkeee Fig. 1.

In this work, both two-dimensional wedge-shaped hoppers and three-dimensional c
ical ones are considered. The attention devoted to those cases stems from two rea
First, in a great number of applications, the containers are indeed axisymmetric, if |
downright piecewise conical. Second, as a consequence of the invariance of the dor
under the scaling transformati@n 6, ¢) — (Ar, 6, ¢), wherex > 0, similarity solutions,
the so-calledadial solutions can be constructed. This was first observed by Jenike [10
and has played a fundamental role in the design of industrial hoppers ever since [12, 16].
radial solutions can be found numerically by solving systems of ordinary differential eqt
tions, specifically boundary value problems. Their behavior is well documented; see, €
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FIG. 1. Geometry and coordinate systems for the two-dimensional, wedge-shaped hopper, and the tt
dimensional conical hopper.

[6, 13] or Section 4. Numerical comparisons of radial fields for both Mohr—Coulomb a
von Mises models can be found in [6, 12].

In this paper, we focus on the stress equations. The corresponding steady state equz
representing balance of forces are found to form a hyperbolic system of conservation |
with several nonstandard features. For instance, the yield condition by itself does not lez
a properly defined flux, but is rather an additional algebraic constraint; see Section 2. M
precisely, using the symmetry of the problem, it is possible to bring the number of unkno
components of the stress tensor down to three, while conservation of momentum yi
two nontrivial equations (in both the two- and three-dimensional cases). The plastic
model is what links the three unknowns together and closes the system. This forces
three dependent variables to stay on a manifold, the yield surface, which for the pres
Mohr—Coulomb materials is a cone; see Fig. 2. One way to accommodate this is thro
an additional physical assumptiorgalization of passive rather than active stagtege
[12] and Section 2. This is the point of view taken here. It has the advantage of keep
the system in conservation form, but does restrict somewhat the range of applicabil
see Section 6. Another point of view consists in “solving” the constraint through a clev
reparameterization of the surface: use of the so-cé@lekblovskii variablesThis is the
standard approach; see Section 6. It comes at the heavy price of destroying the conserv
form of the equations, and thus can only be trusted for the calculation of smooth str
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FIG. 2. Plasticity model: the Mohr—Coulomb yield surface.



66 GREMAUD AND MATTHEWS

fields. However, in many cases of practical interest, such as hoppers with abrupt char
in wall angles and/or wall friction, the stress fields are not expected to be smooth. T
approach taken here allows the reliable calculation of discontinuities such as shear ba
We are not aware of other hopper flow calculations sharing this property; see, however,
for a simplified model. Finally, aside from friction between the grains, from which stel
the above plasticity models, another important aspect of the problems at hand is frict
between the grains and the container’'s walls. An application of the law of sliding frictic
yields boundary conditions that complete the hyperbolic system.

The outline of the paper is as follows. Modeling issues are discussed in Section 2. Ab
analysis of the resulting equations is given in Section 3. Section 4 is devoted to the st
of similarity solutions. The algorithm and numerical difficulties are discussed in Section
Finally, numerical results are presented and commented on in Section 6, which is follov
by concluding remarks in Section 7.

2. THE MODEL

The equations governing thiene-dependerftow of granular material under gravity are
derived and analyzed in [18]. Those are found to be linearly ill posed in most cases
practical interest. To the authors’ knowledge, the situation is not fully understood, matl
matically or otherwise. In practice, strongly time-dependent problems are usually obser
in conjunction withfunnel flowsi.e., flows for which the motion is essentially restricted
to the central part of the silo. This paper deals exclusively widlss flowsi.e., flows for
which all the material is mobilized. In this context, established, steady state flows can
observed.

The spatial domain is taken to be axisymmetric, but not necessarily right conical. T
particles are assumed to have no motion in the axiabjodirection. Even though this
assumption may be counterintuitive to fluid dynamicists, it is an established experimer
fact for granular materials. The dependent variables reduce to four components of st
and two of velocity,

Tr T O Uy
T = TT9 Tg@ 0 V= |Vp|. (1)
0 0 T, 0
The equations of motion are
V-T=pg, V-v=0, (2)

in which p is the density, taken to be constant, and the vegtisrthe acceleration due to
gravity. The first equation represents the balance of forces in the material, while the sec
expresses incompressibility.

The assumption of a constant density deserves some comment. In some practica
uations, for instance near the outlet of a hopper, the bulk density may decrease to le
where the particles are no longer in sustained contact with each other. This is the case i
material, on leaving the silo, goes into free fall. However, most industrial silos are equipf
with feeder devices that reduce the output rate to values much less than free fall. Note
that failing this, neglecting the inertia terms as we did in (2) would probably not be justifie
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see [12]. The treatment of low-density granular flows, which is not covered here, can
approached through kinetic or mixed frictional—kinetic theories for granular materials; <
[11] and the references therein.

Plastic deformation is assumed everywhere. Constitutive models based on plasticity
conveniently expressed in terms of the principal stregsses= 1, 2, 3, i.e., the eigenvalues
of the stress tensdr. If the principal stresses are ordered> o> > o3, then the Mohr—
Coulomb yield condition takes the form

o1 1-+siné
o3 1—sing’

3)

wheres is the angle of internal friction. This relation can be derived from the law of slidin
friction [12, Ch. 3]. By introducing an “average” stregs= %(al + o3), one can easily
rewrite the yield condition as

(o1 — Q)% + (03 — )2 = 2g®sir? 5.
Further, this condition can be expressed in the original stress variables as
(Tre — Top)? + 4T,5 = i 8(Ter + Ton)?. (4)

Additional constitutive assumptions are needed to close the systems. In the Mo
Coulomb analysisy, does not appear. The Haar—von Karman assumption can be invokec
evaluate the circumferential stregs,. Indeed, the Mohr—Coulomb analysis merely state:
thato, > T,, > o3. For axisymmetric converging hoppers, the Haar—von Karman assurr
tion states thal,,, is in fact the major principal stress; i.d,, = o1 = (14 sing).

The resulting equations are

2Ty coto
+ r

1 1

8rTrr + r_aeTrG + Tr(~) - r_(TQO + T(p(ﬂ) = _pg COS@
1 3 1 .

orTre + FB(,T@@ + FTrg + F COtQ(Tge — T‘PW) = pg sing

(5)
(Tor — Top)? + 4T2 = sir? §(Tyy + Too)?

1 .
T‘ﬂ‘/’ - E(Trr + T@g)(l"‘ Sln5).

It can be observed that the above system (5) fully determines the stresses. Although (
widely accepted as a model of the stress behavior, how to complete the continuity eque
V - v = 0 from (2) into a system determining the velocity is much more controversial [9
One of the main issues is which flow rule to adopt, or more precisely, whether princi|
stresses and principal strain rates are aligned. Some models heavily rely on this assumy
such as those involving Jenike’s principle of coaxiality [10, 12], while others predict sii
nificant misalignment, such as Spencer’s double shearing model [21, 22]. In a forthcon
publication [5], we compare various properties of Jenike's and Spencer’s models, espec
whether they lead to energetically acceptable solutions [8].

Concentrating here exclusively on the stress components, one can write the correspor
equations in terms of two unknowiig andT;g,

0 Tir —0pTro = T(1,60, Tir, Trp)

(6)
0:Trg — 99 Too = 9(7, 6, Trr, Trg),
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where some simplifications result from the use of the new variakte—Inr; we do not
bother to rename the stress variables. The right-hand terms are given by

3—-s 3+s
f(7,0, Tir, Trp) = TTrr +cotd T,y — * Too + pge ¥ cOSH
7
1+4s 1-s . ()
g(z,0, T, Trp) = —— cotdT,, + 3Ty + — cotdTyg — pge " sing,

where we have s&t= siné and, for future reference,= +/1 — s? = coss. The equation
of state, which relate$, to the unknowng,, andT,y, is the yield condition (4). It should
be noticed that (4) is the equation of a cone in the spage Ty, Tyy); See Fig. 2.

The corresponding relation betwedpy and the unknowns is therefore not a proper
functional relation, but rather assigns the dependent vari@llesT, ) together withTyg
tolie on a manifold: the yield surface defined by (4). Figure 2 suggests the use of a seemir
more appropriate parameterization of the cone in terms of the Sokolovskii variables
[12]. The relationship between the two sets of variables is then

Ty =01 —scos?y), Ty =o(l+scosy),

To = —ossin2y, T, =0(1+5). ®)

It is possible to rewrite the stress equations (6) in terms of the Sokolovskii variables. T
approach is quite popular in the present field [12] and was for instance taken in [13, 17]
well as in [14], where more involved models, including compressible flows, are discuss
However, the use of this nonlinear change of variables has the unfortunate side effec
destroying the conservation form of the equations, losing in this way the ability to compt
shocks in any reliable way. This would prevent us, for instance, from computing stres
occurring at the junction between conical hoppers of different wall angles, a situation
which discontinuities are to be expected. Further, as is well known, many purely numeri
problems also appear when solving systems in nonconservation form.

The Sokolovskii variables are nevertheless valuable in at least two respects. First
explained next, they admit a useful physical interpretation. Second, in the case of smc
flows (see Section 4), they lead to significant mathematical simplifications. In the pres
axisymmetric setting, the variablg is the angle between the position vector at a giver
point and the direction of the minor principal stress at that point; see Fig. 3. The valt
|v| < /4 correspond to the so-callpdssivestate, [12, 14], as opposed to thetivestate

(r,0) (9 9
01
b %
0
w=0 0< Y <174 =102

FIG. 3. Physical meaning of the Sokolovskii variabe
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YAY,

passive active

FIG. 4. Difference between passive and active states.

for which /4 < |¢|. Indeed, the yield condition (3) prescribes the rzggiobut does not
differentiate between the two situations of Fig. 4.

For converging hoppers, the passive state is the one observed experimentally upon
charge [16], and corresponds to the “top” of the yield surface: a large lateral compress
takes place. Going back to the original variables to keep the system in conservation fc
one can solve (4) fofy, and find the equation of state completing (6, 7),

1+¢? 2 1
Top = h(TI'I's Tre) = mTrr + 2\/(1_ SZ)ZTTE T 1 SzTer)' (9)

1

However, as illustrated in Fig. 5, the range of values that can be treated this way is stri
smaller than that of the passive case. One can solv&/foas above only if%| < tané,
which corresponds tp/| < 7 — % The existence of the threshojd— % results from our
choice of coordinates. By using other coordinate systems, it may be possible to increas
range of values that can be treated by our approach; see further remarks in the next se

Finally, if instead of a three-dimensional conical hopper, one considers a “tw
dimensional” wedge-shaped hopper [11-14] (see Fig. 1), the equations simplify to

1 1
O Ty + r—aé)Tre + r—(Trr — Too) —pgcoso

1 2 .
O Tro + r—aeTee + FTrG = pgsing (10)

(Ter — TOG)Z + 4Tr29 = SiHZS(T” + T09)2-

by ky
W=0 _ A
- WIST74-802 | =0
VAR
\
\ T\/J
- N ] _
Trr ‘NJFTWJ Tre

FIG. 5. lllustration of the passive stat¢ | < 7/4 vs the values for which hyperbolicity is satisfigh] <
Z — 2, see also Section 3.
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The stress equations can again be written under form (6) with here

f(z,0, Tir, Tro) = Ty — Top + pge ™ COSH 1)
g(t,0, Tir, Tro) = 2T1p — ;0967r siné.

The systems (5) and (10) have to be completed with appropriate boundary condition:s
brief analysis of the stress equations, presented in the next section, will reveal what k
of boundary condition leads to well-posedness. The principal parts corresponding to
two- and three-dimensional problems (10) and (5) being identical, the analysis covers t
cases.

3. BRIEF ANALYSIS OF THE EQUATIONS

The stress equations (6) can be rewritten as
U+ 0FU) =G, (12)

with the obvious notation. One can then analyze the eigenvaluesf the Jacobiark’. A
few calculations lead to

1 [sT, Fcha 1
M= Ttans =, oo T e , 13
L2 =TT STy £ehe 227 [ (13)

wherer ; are the corresponding eigenvectors. The eigenvalues are real provided that
stays “in the cone,” i.el%ﬂ < tang, which corresponds to the domain of definitiorFoin
(12). In that case, one clearly has < A,. Consequently, the steady state stress equatior
(6), (7), (9) form astrictly hyperbolic system of nonlinear conservation laws with sourc
terms The radial and angular variableandé can be thought of as time-like and space-like
variables, respectively. One cannot overemphasize the importance of this key observa
the problem of the determination of the stress field is onpropagation Incidentally,
it should be noticed that if a von Mises vyield surface, [7, 12], is used, instead of t
present Mohr—Coulomb approach, then the corresponding three-dimensional steady -
equations are sometimes elliptic instead [18]. In the two-dimensional case, both approa
are identical. Numerical comparisons between the two types of models, in the case
similarity solutions (see Section 4), can be found in [6, 12].

Additional facts can be uncovered about the hyperbolic system (6) governing the stre:
under the present approach. First, the eigenvalues are unbounded, even for bounded
components. Indeed, fd§, fixed, one observes that

A — —tand whenT,y 1 tandT,,,
Al — —00 whenT,y | —tans T,
Ao — 00 whenT:y 1 tané T,
Ao — tané whenT,y | —tansT,.

Further, direct calculations show that for afiy;, T;4} such thau%’ | < tanéd, one has

Vai -1 #£ 0,1 = 1, 2. Both characteristic fields are thus genuinely nonlinear.
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0< Y <1W4-06/2

FIG. 6. Link between a possible loss of hyperbolicity and the choice of a coordinate system.

Again, it is instructive to rewrite the expression (13) for the eigenvalues in terms of t
Sokolovskii variablego, ¥). One finds after some manipulations

A2 = cot(y F (/4 —§8/2)). (14)

In other words, the stress characteristics are inclingtday4 — §/2) to the major principal
stress direction [12, 13]; see Fig. 6. As noticed in the previous section, values for wh
|| > /4 — §/2 lead to grief, here through the fact that the range of influence would |
partially pointing “into the past” (increasing valuesrofi.e., decreasing values oj. One
also observes from Fig. 6 that this problem could be partially alleviated by changing f
time-like variable from radial to a variable whose level lines would be closer to being paral
to the local direction of the major principal stress. How to do this in practice is under stu

We now seek to learn what type of discontinuities constitute admissible shocks for
stress equations (6). To determine the Hugoniot loci, a fixed 6tateT ) is considered.
The Rankine—Hugoniot condition for (6) takes the form

:l:ré? - -lA—rO = w(frr - :I;rr)
Too — Too = w(Tre — Tro),

wherew stands for the shock speed, for lack of a better notation,-asheihttes the states
to be found. Eliminatingw leads to

(h(:l:rr s fre) - h(-i:rr s fr@))(frr - -lA—rr) = (:I:re - fre)z,

whereh(., -) is defined in (9). The above equation is essentially equivalent to a gene
polynomial equation of degree 4 and, as such, does not admit any easy-to-handle-clc
form solutions. Making use of the genuine nonlinearity of both fields, admissibility is give
by Lax’s entropy condition. Consequently, considering the fixed state the left state, a
discontinuity in the th field,i = 1, 2, is admissible only if

5\.i>w>1i.

The situation is illustrated in Fig. 7.
The system has to be completed with “initial” and boundary conditions. The bounde
conditions are given by the law of sliding friction. At any point on the wall, the magnitud
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Tre =tan(d) Trr
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~
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°

0 05 1 15 2 25 3

FIG. 7. Hugoniot loci. A fixed stateT.,, Trs) = (1, 0) is considered the left state. Left: Location of the
corresponding Hugoniot curves. Right: Admissible shoéks 30).

of the tangential streg3+| is proportional to the magnitude of the normal strigsg;; i.e.,
[Tr| = w|Tnl,

whereu > 0is the coefficient of wall friction. In a purely radial geometry, the above boun
dary condition becomes

Tio = £uTye onthe walls (15)
with a “4” sign on one side of the hopper and &™
more detalils.

The case of the “initial” condition is more delicate. Itis chosen here to prescribe the str
field high up in the hopper, say, on a = constant” surface, and solve down from there.
In other words, it is assumed that stress information flows from the top down, rather tt
from the bottom up, which would make equal sense mathematically. Indeed, if one puf
weight on top of material in a hopper, stresses increase but the flow speed does not ch
significantly. On the other hand, if one changes the speed of the flow near the outlet,
instance, the velocity field then changes throughout the hopper with only minimal chan
in stress. It seems thus that velocity information flows from the bottom up [19]; see al
[23, 24] for some experiment-based arguments. Those questions are under study [5].

sign on the other; see Section 5 for

4. SIMILARITY SOLUTIONS

In the early 1960s, Jenike [10] discovered similarity solutions for the steady state eq
tions governing flow of granular materials under gravity in a conical or wedge-shap
hopper. In these solutions, particle paths are radial lines converging to the vertex of
hopper. For this reason, the solutions are referred tacial solutions The similarity is
reflected in scalings of the stress and velocity with respect to radial distamnzéh the
result that stress decreases along particle paths while the particles accelerate. Radi
lutions, tabulated by Jenike for a large range of physical parameters, form the basis
much work on the design of mass flow hoppers [16], in which the flow is thought to |
approximately radial. These solutions are also helpful for understanding and studying b
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properties of hopper flow [12] and the role of parameters such as internal friction and v
friction.

Following Jenike, one can seek similarity solutions to the two- and three-dimensiol
problems, respectively (5) and (10), of the form

Tij r,9)=r Tij ).

The formulation can be simplified through the use of the Sokolovskii variables; see Sectio
Since the similarity solutions sought in this section are smooth, this change of variat
is here perfectly justified. The equations defining the radial solutions for the stresses
found to correspond to the boundary value problem [6, 12]

A[O”(G)

W(Q)] =Bu(0,0(0),¥(0)), 0 € (—by,0u),

(16)
W (iew) = :l:l,[/w .

In the above problem, the quantitids B4, d = 2 or 3 andy,,, are given by

A—[ —ssin2y —250c052//]
" |1+scosy —2sosin2y |

_0059} [35003(21//) - 1]
+ o

B0, 0,v) = Pg[ sing 3ssin(2yr)

—cosh 4scoq2y) — 1+ s+ scotd sin(2y)
B0.0.9) = 0| 07| +o] B
ssin(2y) — s(cog2y) — 1) cotd
1 _ [/ sin®
Yy = > (CD + arc&n(T)),

where® is theangle of wall friction which is defined by ta® = u, 0 < ® < /2. The
boundary value problem (16) is nonsingular provided that

i <Z4?
< — —.
4 2

Note that the above is a third critical value |gf|, in addition to the first two discussed
in Fig. 5, which corresponded respectively to the threshold hyperbolic/nonhyperbolic
passive/active. The fact that the problem of finding the radial fields may become singt
under some circumstances should not come as a surprise. Indeed, the assumption th
material is at yield everywhere, which precludes the formation of rigid areas in the flow,
clearly not satisfied if the opening angle is too wide.

The above problem (16) has to be solved numerically. This can easily be done thro
the use of a collocation method, for instance, such as COLSYS [1], which was used f
and is based on collocation at Gaussian points. A study of the properties and stabilit
radial solutions can be found in [6]; see also [12, 13] for earlier results.

5. THE ALGORITHM

For the sake of simplicity, we only describe the algorithm in the case of a conical hopy:
The method used is a formally high-order discontinuous Galerkin scheme; see [3] and
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references listed therein. This type of method presents several advantages. Unlike r
standard finite element methods, they are explicit in time, heaad can be equipped with
high order TVD Runge—Kutta time discretizations [2]. Unlike most high-order finite differ
ence methods, their compact stencil allows easy implementation of boundary conditic
as only the information from immediate neighbors is used to march in tindt s worth
noting that for the present application, no a priori bound on the speeds of propagatio
available; see (13).

Let rp = —Inrq, whererg is the value of the radial variable from which we start. Let
6, > 0 be the half opening angle, and lab = 6,,/N be the mesh sizell being the
number of cells. In this axisymmetric setting, the problem is essentially one-dimensiol
“spatially,” and thus no efforts have been made to adapt the mesh. We define

V= {vel™06,)%:vl € P*KjpZ j=0,....N-1},

whereK = [6_12, 0j11/2] is the jth cell, with6j_1» = j A9, andPX(K;) stands for the
space of the polynomials of degree at most K ;. We usek = 1 or 2 below; see Section 6.
A semidiscretization consists in looking fak,(z, -) € V, t > 19, such thatJy(z, -) =
Iy (U (o, -)), WhereU (1o, -) is an “initial condition” (see Section 6]]y is a projection
operator intov, and

d > d
I KJUh(r, 0)v(0)do + A (v(0j-1/2) Hj-1/2) — EWI F(Un(z, 9],|))£U(9j,|)ﬁ9

5
= Zw.c;(f, 01, Un(z, 0)v(0;NA0, YveV,j=1... N.
=1

In the previous expression, .. stands for the usual difference operatdr,U; = U1 —

U;, and the coefficientsy and the node§;;,| =1,...,5,j =1,..., N, stem from the
use of the classical 5-point Gaussian quadrature formula. We use the local Lax—Friedr
flux

1 B B
Hisaz = 5 (F(Uia2) + F(Uih2) = e412(V S = Upiae)

wherea;j 1,2 is the magnitude of the largest eigenvalue of a properly chosen Roe aver:
matrix Aj 12 &~ (%)U:UHl/Z [15]. Rewriting the equation of state (9) h&, b) = va +

V/paz + yb2, with @ = f_f—zi B = %, andy = %, the Roe average matrik; 1
can be chosen here as

Ajj12=—

0 1
a_l_ﬂfijﬂ/z y§j+1/2 ’

Xj+1/2 Xj+1/2
where the averages are defined ay,1> = (@)1, + aj++l/2)/2, 5j+1/2 = 0410 +

b 11/2)/2 a1 1172 = £/ B(@7 11,27 + 7 (070,272 + [ B(@ 10,27 + 7 (B 10,272

The mass matrix can be made diagonal by choosing the basis functions as Legel
polynomials over each cell [2]. The coefficientsf(z, -) can then be grouped in a vector
U(t). The unknown vecta/(z) satisfies the system of ODEs

d
au=f(u)+g(f,u), 7
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whereF () andG(z, U) come respectively from the discretizationFofU ) andG(z, 6, U)
in (12). Note that we use below an unsplit approach. This is justified first by the fact tt
the source terng (z, I/) is not stiff and second by the realization that the delicate interpla
betweeng(z, i) and the boundary conditions would render the implementation of a sp
algorithm a lot more involved than the present approach.

The discretization with respect toinvolves a third-order TVD Runge—Kutta [20] com-
bined with a local slope limiting process. L&t > 0 be a constant incrementinand let
" = 79 + nAt and N, be the number of time steps. The algorithm reads then as follov
(see, e.g., [3]):

e Sett = ATI(Un (1o, -));
e Forn=0,..., N, — 1, computé/:
1. sety©@ —L{h,
2. fori =1,..., 3, compute the intermediate stages

i—1

UD = AT Y e jUD + At (F(UD) +G(" +djar, UD))
j=0
3. setft =U®,

The numerical parametefs;; }, {8}, and{d;},i =1,2,3,] =0, 1, 2, are defined as

ap=1 Bro=1 do=0
a0 =32 a =1 Bao=0 Bo1 =3 dp=1
a0=3 =0 az=3% =0 Pa1=0 fz=% dr=1.

Athorough description of the local slope-limiting operatdr, which is based on the use of
a corrected minmod function, can be found, e.g., in [3] (see [2] for the modificationBEto
at the boundary); it is not repeated here. Note that bdthand the proper implementation
of the boundary conditions (15) require transformation to the characteristic fields.

The construction of the numerical flux at the boundaries deserves some comments.
pressed in the original variables, the boundary conditions are

Ty even T,sodd at9 =0,
and
Trg = —uTyy até =o,.

The corresponding nodes afe;», = 0 andén_1/» = 6,,. Considering first the condi-
tion até = 6,,, the matrixAy_y/» is diagonalizedAn_1/> = RA R~1, where the columns
of R=[ry1|r;] are the right eigenvectors oAn_1> and A = diag(A1, 12). We know

from Section 3 that.; < 0 andis > 0. The vectorT = [.I.rr N-1/21 is transformed to
ro,N—1/2

characteristic variables by left multiplying By i.e., [ul N- 1/2] R1T. Sincexr, > 0,
2

weseus 1/2 = Uz y_1/2- The boundary conditiofyy = = 99 isusedtodefine; y_;,.

It should be noted that even though the above boundary condition appears to be nonline

(Tir, Trg), itisin fact a linear relation. This can be seen geometrically since this amounts

taking the intersection of the yield cone (4) (see Fig. 2) with a plape= —u Ty through
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the vertex of the cone. Algebraically, the boundary condition reduces to
1—scos 2,
ssin2y,

wherey,, is defined as in (16). By translating this condition to characteristic variable
throughR = [r; | r2], one obtains

Ter = XwTro with Xw = —

—T12+ Xwl22

ut _
1LN-1/2 = 2.N-1/2"

F11— Xwl21

The values entering as arguments in the numerical fléx-at,, are then

[TrtN1/2‘| B RlUINm]

Trg,N—l/Z UIN—l/Z

The conditions aff = 0 simply correspond to the symmetry properties of the stress con
ponents and are directly implemented as

lTrr,l/z] B [ T 1) ]
Tro.—1/2 —To 12
6. COMPUTATIONAL RESULTS

We analyze the influence of abrupt changes in the wall angle on the stress field. -
geometrical situation is illustrated in Fig. 8.

Any point P admits two representations, namélR, ®) and(r, 6), corresponding to the
natural coordinate systems for the upper and lower hopper, respectively. The transitio
located through the poir® (see again Fig. 8), wher®@ = (Ry, —©,,) = (ro, —0,,). For
given values of the material parametémnd ., the numerical approach consists then of

e generating the radial stress fieldin the upper hoppef(R, ®): R > 0, || < ©,,}
[6, 12]; by construction, at a poiiR, ®), the radial stress field is given lBT(®);

FIG. 8. Geometrical situation: left, transition to a flatter wall angle; right, transition to a steeper wall ang|
The radial stress is used to generate an initial condition on the €yrviehe domains of calculation are shaded.
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e interpolating the radial stress field on the cuRge= {(r, 0):r =ro, |0] < 6,,}, leading
to a stress tens&y, ;

e changing to the new coordinate system toget= R (® — 0) Sy, R(® — 6), where
R(a) is the rotation matrix of angle;

e solving in the lower hoppef(r,0): 0 <r <rg, 0 < 6 < 6,} using the algorithm de-
scribed in Section 5, anfl,, as an initial condition.

The boundary conditions are implemented as described at the end of Section 5.

Some comments are in order. First, the fact that the initial condition is generated fr
the radial stress field implicitly assumes that this very solution is sought and realized
the problem in the upper part of the hopper. Second, it also takes as granted that the r
solution reaches the cundg unperturbed by the wall corner. This last point is clearly
satisfied, assuming again a downward propagation of the information for the stresse:
the case of a transition to a flatter hopper, i&,, < 6,, (Fig. 8 left). If the transition is to a
steeper hoppeé,, < ©,, (Fig. 8 right), a quick analysis based on the characteristic curve
reveals that the difference in angles should not be too large, namely

O, —0, < arctar’ , 6y,0, >0.

max

Herelmax is the largest eigenvalue in moduluskef, see (13), evaluated along the cufe
(anr equal to constant line for the lower hopper).

By way of illustration, we conside$ = 32.1° and u = tan(11.7°) and determine the
maximum transition for a range of upper hopper wall anghes(Fig. 9). Itis clear from the
expression for the eigenvalues in terms of the Sokolovskii variables (14) that the maxim
value ofy determines the eigenvalue of largest modulus and thus the limitation on t
size of the transition. First, note that the valueyofat the wall in the upper hopper is
independent of the wall angl®,,; see, e.g., (16). As can be checked numerically, fo
the present illustratiory is monotonic for values 0®,, up to 224°. Thus for this range
of opening angles, its maximum value is found at the wall. Consequently, the maximi
transition allowed for®,, < 22.4° is constant. In Fig. 9, this corresponds to the lineal

40

35}

30

251 6 =0

20

15

C

minimum value of BW

10

FIG.9. Range of values df, leading to a well-defined “initial” condition for given values®f,; § = 32.1°,
n=tan(117°).
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portion of the curve (marke@) representing the minimum theoretical valueggf For
0, > 224,y ceases to be monotonic and has a global maximum in the interior of tl
domain. Itcan be checked, again through the numerical calculation of the radial field, that
maximum value of) keeps increasing &3,, is increased further. This results in a decrease
in size of the allowable transition. This can be seen by the cGregproaching the line
0, = ©,,. For some value 08, 39.5° for the present example, the maximum transition
has neared zero (cur@intersects the liné, = ©,,) and our current approach cannot treat
even the initial condition since there, the maximumyois already greater than/4 — §/2
and a transition to a hopper of steeper wall angle can only make the problem more diffic

While determining whether an initial condition fits the limitations of our current approac
can be easily done as above, checking whether the problem stays “solvable#or all
is not as clear. This amounts to establishing a priori bounds on the magnitydeTis
was done a posteriori, and numerically, for the above example. Turning again to Fig.
the vertical bar a®,, = 30° denotes the actual (small) range of transitions over which th
solution can be computed far>> 0.

Finally, the cas#®,, = ©,, can be used to check that the algorithm effectively preserve
the radial solution. The interaction between the boundary conditions and the forcing ter
renders this numerically delicate. Further, the radial solution itself may be unstable |
For 6, = ®,, the present approach preserves the radial solution with a great degree
accuracy. In Fig. 10, the relative difference between the radial solution at any given “tinr
7 and the solution from the PDE solver is illustrated. Both graphs in Fig. 10 correspo
to an integration 95% down the hopper. One observes that even though in both case:
error is quite small, the behaviors of the two- and three-dimensional problems are q
different. For the two-dimensional problem, the largest discrepancy is less than 0.025%,
it appears to be increasing as one progresses down the hopper. In the three-dimensional
the largest value of the discrepancy is about 100 times larger, but the difference decre
as one solves down the hopper to an asymptotic value less than 0.5%. The fact that
two-dimensional problem is less stable than its three-dimensional counterpart was alre
observed in [13]; see also [6] for a linear stability study. Because the initial condition
constructed as a projection of a numerical solution into polynomial space, it does not exa
satisfy the boundary conditions. The resulting perturbations propagate through the hoj
and are amplified when being reflected at the center, or more precisely when interac
with similar waves coming from across the hopper. In the three-dimensional axisymme!
case, those waves come from all directions, which is not the case for the two-dimensic
problem. The spikes observed in Fig. 10, right, correspond to the interactions of those wze
at the center. Below, both the case of a transition to a steeper hépper®,,, and that of
a transition to a shallower ong, > ®,, are considered. One can note that with respect ti
applications, it may be even more important to treat the flow near the juncture betwee
cylindrical silo and a conical hopper. However, the two cases, i.e., cylindrical vs conic
correspond to two different types of motion. Indeed, in cylindrical geometry, the mater
can flow without deforming. Further, the state in the cylindrical portion is likely to be activ
(as a result of the filling process), while the passive state is expected in the converc
conical silo; see Section 2 and [12, 14, 17]. The determination of the precise nature of
transition between the passive and active parts of the flow and the corresponding “sw
stresses”[12, Sect. 7.13] are still to our knowledge essentially open problems. To avoid th
delicate problems, we consider here exclusively junctures between two converging con
(or wedge-shaped) hoppers, in order to have a passive state throughout. Some predictic
to what happens can be found in [12, p. 237]. By invoking a simple characteristics analy
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0.02f 2
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FIG.10. Preservation of the radial field by the PDE solver. Left: Wedge-shaped hopper; right: conical hopy
For each value of = —Inr, the error is represented by the maximum percentage of difference between the rac
field and the PDE solutio,, = ©,, = 30°, § = 32.1°, u = tan(11.7°).

and/or by using a (dangerous) analogy with fluid dynamics, one may guess that transit
to steeper hoppers will lead to rarefaction wave formation, while transitions to shallow
hoppers should correspond to the formation of shock waves. To some extent, our re:
confirm this, but also show that the situation is in general far more complex.
Computational results are given below for values of the material parameters

§=321°, p=tan1l7°, p =790 kg/n?,

which roughly corresponds to corn in a steel hopper. The number of “spatial” cells (angt
variable) in the half-hopper corresponding to the domain of calculatidh 45 400. The
time step (radial increment) is chosen to satisfy the experimental stability condition [2]

N AT - 1
MmN T 2k+ 1

whereimaxis the magnitude of the largest eigenvalue all the Roe matrices. Finally, most
the results presented are for a polynomial approximation of dégreé. Using discontin-
uousP?, k = 2, did not lead to significant improvements at comparable cost (see Fig. 1

FIG.11. Details foratransition from a conicél, = 30° hopper to &, = 24° one;§ = 32.1°, u = tan(117°).
Left: P* approximation withN = 400; right: P2 approximation withN = 200.
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the use of an unsplit implementation. The problems of transition from shallower to stee
hoppers are solved successfully by the present approach for a wide range of parame
both in the case of three-dimensional conical hoppers and in the case of two-dimensi
wedge-shaped ones. Transitions from steeper to shallower hoppers are found to be 1
delicate. While the two-dimensional case can still be efficiently treated, itis found that thre
dimensional hoppers can only accommodate small transitions of this type. This limitati
is not physical nor is it related to a shortcoming of the numerics, but ultimately results frc
the choice of coordinate system. Roughly speaking, characteristics that should be “poin
down” (decreasing values of the radial time-like variable) stop doing so, resulting in a Ic
of hyperbolicity. The study of alternate coordinate systems that would expand the rang
parameters to which the present method applies while keeping the equations in conserv:
form is under way.

The resolution of the full problem, i.e., determination of stress and velocity fields, wi
be the object of a future publication.
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